PCA consistency in high dimension, low sample size context

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pca Consistency in High Dimension , Low Sample Size Context

Principal Component Analysis (PCA) is an important tool of dimension reduction especially when the dimension (or the number of variables) is very high. Asymptotic studies where the sample size is fixed, and the dimension grows (i.e. High Dimension, Low Sample Size (HDLSS)) are becoming increasingly relevant. We investigate the asymptotic behavior of the Principal Component (PC) directions. HDLS...

متن کامل

Consistency of sparse PCA in High Dimension, Low Sample Size contexts

Sparse Principal Component Analysis (PCA) methods are efficient tools to reduce the dimension (or number of variables) of complex data. Sparse principal components (PCs) are easier to interpret than conventional PCs, because most loadings are zero. We study the asymptotic properties of these sparse PC directions for scenarios with fixed sample size and increasing dimension (i.e. High Dimension,...

متن کامل

Boundary behavior in High Dimension, Low Sample Size asymptotics of PCA

In High Dimension, Low Sample Size (HDLSS) data situations, where the dimension d is much larger than the sample size n, principal component analysis (PCA) plays an important role in statistical analysis. Under which conditions does the sample PCA well reflect the population covariance structure? We answer this question in a relevant asymptotic context where d grows and n is fixed, under a gene...

متن کامل

Deep Neural Networks for High Dimension, Low Sample Size Data

Deep neural networks (DNN) have achieved breakthroughs in applications with large sample size. However, when facing high dimension, low sample size (HDLSS) data, such as the phenotype prediction problem using genetic data in bioinformatics, DNN suffers from overfitting and high-variance gradients. In this paper, we propose a DNN model tailored for the HDLSS data, named Deep Neural Pursuit (DNP)...

متن کامل

Geometric representation of high dimension, low sample size data

High dimension, low sample size data are emerging in various areas of science. We find a common structure underlying many such data sets by using a non-standard type of asymptotics: the dimension tends to 1 while the sample size is fixed. Our analysis shows a tendency for the data to lie deterministically at the vertices of a regular simplex. Essentially all the randomness in the data appears o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Statistics

سال: 2009

ISSN: 0090-5364

DOI: 10.1214/09-aos709